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Abstract

This paper derives analytical solutions for steady-state one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D)
two-phase immiscible subsurface flow for a counter-current problem. Since the governing equations are highly nonlinear, 2-D and 3-D
derivations are generally difficult to obtain. The primary purpose for the solutions is to test finite difference/volume/element computer
programs for accuracy and scalability using architectures ranging from PCs to parallel high performance computers. This derivation is
accomplished by first solving for the saturation of water in terms of a function that is a solution to Laplace’s equation to achieve a set of
partial differential equations that allows some degree of latitude in the choice of boundary conditions. Separation of variables and Fou-
rier series are used to obtain the final solution. The test problem consists of a rectangular block of soil where specified pressure is applied
at the top and bottom of the sample, and no-flow boundary conditions are imposed on the sides. The pressure at the top of the sample is
a step function that allows the testing of adaptive meshing or concentration of grid points in action zones.
� 2008 Published by Elsevier Ltd.
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1. Introduction

The computer programs used to model two-phase
groundwater flow need tools to test their accuracy and effi-
ciency. One such tool is analytical solutions When the gov-
erning partial differential equations (PDEs) are highly
nonlinear, these analytical solutions are generally difficult
to obtain. This is certainly true of two-phase flow where
not only the equations for oil and water are highly nonlin-
ear, but they are also coupled. Some one-dimensional (1-D)
solutions exist for vertical flow, but two-dimensional (2-D)
and three-dimensional (3-D) solutions are rare. This paper
derives analytical solutions for steady-state 1-D, 2-D and
3-D two-phase oil–water subsurface flow having counter-
current velocities.
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2. Previous work

Sander et al. (1988) derived an analytical nonlinear solu-
tion to the problem of 1-D two-phase oil and water infiltra-
tion under a constant flux boundary condition. By using a
very simple change in the independent variables of space
and time, this solution was shown to also apply to the prob-
lem of constant infiltration of water. Yang (1992) built
upon this work and found an analytical solution to two-
phase flow of up to three dimensions where the solution
is exact when the total mobility of the two phases is a con-
stant. The solution was derived from basic continuity equa-
tions using the method of characteristics. The solution
includes the effects from production rate, relative perme-
ability curve, viscosity, well configuration, formation
anisotropy, and boundaries. One important application of
this solution is to the evaluation of water coning into verti-
cal or horizontal wells. Tsai (1990) discusses an analytical
solution of dense two-phase flow in a vertical pipeline.
Hewett and Yamada (1997) developed a semianalytical
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method for calculating oil recovery in two and three dimen-
sions and for calculating effective relative permeabilities for
coarse grids. The calculations are based on the assumption
that the effects of a changing mobility field can be
accounted for by using fixed streamtube geometries with
flow rates updated to account for the changing mobility dis-
tribution. Walter (1990) gives analytical descriptions of ide-
alized two-phase flow of immiscible fluids in capillary pore
spaces shaped like cylinders and cracks. Panfilov and Flori-
at (2004) derived a macroscale model of first-order for two-
phase immiscible flow through a heterogeneous porous
medium in a gravity field but with neglected capillary pres-
sure. Iqbal and Civan (1986) discuss the finite analytic
method for reservoir flow models. These techniques com-
bine analytical methods with computational schemes to
potentially be more accurate than conventional finite differ-
ence and finite element methods. However, they are natu-
rally problem-dependent. Jinno (1978) derived equations
for the finite element method using the 1-D equations for
the two-phase interface of the free surface and extended
his method to two dimensions. Hou (2005) did a multiscale
analysis that provides a useful guideline for designing effec-
tive numerical methods for incompressible flow by (1) con-
structing local multiscale bases for diffusion-dominated
problems good for two-phase flow in heterogeneous porous
media and (2) deriving semianalytic multiscale solutions
local in space and time whose solutions approximate
large-scale convection-dominated transport. The phenome-
non of instabilities (fingering) was investigated by Verma
and Mishra (1973), and an analytical expression for the
average cross-sectional area occupied by fingers was derived
and applied to fingering stabilization. Cai and Zhang (2001)
derived two sets of algebraically explicit analytical solutions
for 1-D unsteady gas–liquid two-phase flow. Okusu and
Udell (1989) derived a semianalytical model of steady, 1-
D immiscible displacement that includes the effects of cap-
illarity and gravity. The solution divides the two-phase zone
into two regions: a stabilized zone where the saturations
propagate at a constant velocity and a multivelocity zone.
In the stabilized zone, the equations of multiphase flow
are transformed onto a moving coordinate system, and a
first-order, ordinary differential equation describing the
change in saturation is obtained. The fractional flow (the
ratio of injected phase velocity to the total velocity) includ-
ing capillarity is shown to be linear with respect to satura-
tion in this region. Constitutive equations for the wetting
and nonwetting phase pressures are then derived. Finally,
Tracy (1997) compares two-phase flow computations using
analytical solutions and finite element models, which is the
genesis of the work presented in this paper.

3. Governing equations

Steady-state flow in a homogeneous porous medium of
two immiscible fluids with constant densities with the wet-
ting phase represented by water and the nonwetting phase
represented by oil is given by
r � ðKwrhwÞ þ
oKw

oz
¼ 0 ð1Þ

r � ðKorhoÞ þ
oKo

oz
¼ 0 ð2Þ

where hw is the pressure head of the water, ho is the pressure
head of the oil, Kw is the hydraulic conductivity of water,
Ko is the hydraulic conductivity of oil, z is the z coordinate,
and

hw ¼
pw

qwg
ð3Þ

ho ¼
po

qog
ð4Þ

where pw is the pressure of the water, po is the pressure of
the oil, qw is the density of the water, qo is the density of
the oil, and g is the acceleration because of gravity. One
should note carefully that hw and ho are defined using differ-
ent densities. Hydraulic conductivity is modeled by

Kw ¼ kwrKws ð5Þ
Ko ¼ korKos ð6Þ

where Kws is the saturated hydraulic conductivity of water,
kwr is the relative hydraulic conductivity of water, Kos is the
saturated hydraulic conductivity of oil, and kor is the rela-
tive hydraulic conductivity of oil. kwr and kor are the terms
that cause the nonlinearity in the governing equations. Eqs.
(1) and (2) can now be written

okwr

oz
þr � ðkwrrhwÞ ¼ 0 ð7Þ

okor

oz
þr � ðkorrhwÞ � r � ðkorrhcÞ ¼ 0; hc ¼ hw � ho ð8Þ

where hc is the capillary pressure.

4. Relative hydraulic conductivity and moisture content

Relative hydraulic conductivity for water is modeled by
a version of Gardner’s exponential model (Gardner, 1958;
Seǵol, 1994) as follows:

kwr ¼ eahc ð9Þ
where a is a parameter. This is the basis of the quasi-linear
assumption that is illustrated well by Warrick (2003) and is
useful for deriving analytical solutions for unsaturated flow.

Irmay (1954) determined experimentally that some
unsaturated soils can be modeled using

kwr ¼ Sm; S ¼ hw � hr

hs � hr

ð10Þ

where S is the saturation of water, hw is the water content,
hs is the saturated liquid content, hr is the residual liquid
content, and m is a parameter. For simplicity in this deriva-
tion, m = 1 is chosen. Then

hw ¼ hr þ ðhs � hrÞeahc ð11Þ
Fig. 1 compares Eq. (11) to the more standard equation by
van Genuchten (1980),
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Fig. 1. Water content for van Genuchten and exponential models.
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hw ¼ hr þ
hs � hr

½1þ ð�nhcÞn�1�
1
n

ð12Þ

for n = 0.56 m�1, n = 2.0, hr = 0.15, hs = 0.45, and
a = 0.20 m�1. The curves are close enough for testing
numerical models. The use of Eq. (10) can be justified by
realizing first that unsaturated flow is two-phase flow with
water and air. Since the pressure due to air is usually taken
as zero, the pressure head of water is the capillary pressure.
Thus, curves such as the van Genuchten equation are used
for unsaturated flow and two-phase flow, too. The use of
the simple equations,

kwr ¼ S ð13Þ

S ¼ eahc or hc ¼
1

a
ln S ð14Þ

is done because this is the relationship that allows the ana-
lytical solution to be achieved. This does greatly limit the
soils that apply, but since the goal of this work is to test
numerical models, this is an acceptable approximation.

In like manner,

kor ¼ 1� S ð15Þ
5. General solution

First, substituting Eqs. (13)–(15) into Eqs. (7) and (8)
produces

oS
oz
þr � ðSrhwÞ ¼ 0 ð16Þ

� oS
oz
þr � ½ð1� SÞrhw� �

1

a
r � ð1� SÞ

S
rS

� �
¼ 0 ð17Þ

The sum of Eqs. (16) and (17) yields

r � rhw �
1

a
ð1� SÞ

S
rS

� �
¼ 0 ð18Þ

or

r2 hw �
1

a
ln S þ 1

a
S

� �
¼ 0 ð19Þ

This gives

hw �
1

a
ln S þ 1

a
S ¼ /; r2/ ¼ 0 ð20Þ
Putting Eq. (14) into Eq. (20) generates

ho þ
1

a
S ¼ / ð21Þ
5.1. Determination of /

The solutions provided in this paper are limited to those
where

/ ¼ �zþ c0 ð22Þ

where c0 is a constant determined from the boundary con-
ditions. Substituting Eq. (22) into Eqs. (20) and (21) gives

hw ¼
1

a
ln S � 1

a
S � zþ c0 ð23Þ

ho ¼ �
1

a
S � zþ c0 ð24Þ

The justification for using Eq. (22) is that this simplification
allows an easy derivation for S. The impact of this choice is
that the total heads and Darcy velocities for both oil and
water depend only on S. These criteria are met in the test
problem given below.

Another way to understand the impact of Eq. (22) is to
examine the dimensionless ‘‘total velocity,”

V ¼ Vw

Kws

þ Vo

Kos

ð25Þ

where Vw is the Darcy velocity for water, and Vo is the
Darcy velocity for oil. From the definition of Eq. (25).

V ¼ �kwrrðhw þ zÞ � korrðho þ zÞ ð26Þ

From Eqs. (23) and (24), (26) becomes

V ¼ Sr � 1

a
ln S þ 1

a
S

� �
þ ð1� SÞr 1

a
S

� �
ð27Þ

The conclusion of the meaning of Eq. (22) from Eq. (27) is
that

V ¼ 0 ð28Þ

This means a counter-current flow of water and oil while
the oil and water velocities are inversely proportional to
the corresponding hydraulic conductivities, Kws and Kos,
respectively. To elaborate, combining Eqs. (25) and (28)
gives
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KwsVo þ KosVw ¼ f1 þ f2 ¼ 0 ð29Þ

where f1 and f2 are proportionality constants. When
f1 = �f2, counter-current flow occurs. In particular, if the
oil and water properties are identical, then Eq. (28) means
simply a counter-current flow at equivalent absolute phase
velocities at each point.

5.2. Derivation of S

By substituting Eq. (23) into Eq. (16),

oS
oz
þ 1

a
r � ½ð1� SÞrS� � r � ðSrzÞ ¼ 0 ð30Þ

or

r � ½ð1� SÞrS� ¼ 0 ð31Þ

or

r2½ð1� SÞ2� ¼ 0 ð32Þ

or

ð1� SÞ2 ¼ w; r2w ¼ 0 ð33Þ

The general solution for S is therefore

S ¼ 1�
ffiffiffiffi
w

p
; 0 6 w 6 1 ð34Þ

The final solution is now reduced to solving Laplace’s equa-
tion for w based on the boundary conditions.

6. Test problem

Since the goal is to test numerical programs, geometri-
cally simple problems are selected. A rectangular block of
soil having dimensions a � b � L with 0 6 x 6 a, 0 6 y 6 b,
0 6 z 6 L will now be considered as shown in Fig. 2. Pres-
sure head is specified at the bottom and top of the soil sam-
ple, and the sides are impervious. Water is applied in the
middle fourth at the top plane (z = L) (see Fig. 2). The
boundary conditions are designed so that water flows
Fig. 2. Test
downward, and oil flows upward. With only the need to sat-
isfy Eq. (22) and for w to satisfy Laplace’s equation, a wide
range of problems can be solved using separation of vari-
ables and Fourier series. The resulting boundary conditions
for one such problem where the pressure head for oil at the
top-left and top-right of the soil sample (not in the middle)
is chosen to be zero are as follows:

kwrðx; y; 0Þ ¼ �1; 0 < �1 <
1

2
hoðx; y; 0Þ ¼ L

hwðx; y; 0Þ ¼
1

a
ln½kwrðx; y; 0Þ� þ hoðx; y; 0Þ

ð35Þ

kwrðx; y; LÞ ¼ �1 þ ð1� �1 � �2Þ U x� a
4

� �
� U x� 3a

4

� �� �

� U y � b
4

� �
� U y � 3b

4

� �� �
; 0 6 �2 <

1

2

hoðx; y; LÞ ¼
�1 � kwrðx; y; LÞ

a

hwðx; y; LÞ ¼
1

a
ln½kwrðx; y; LÞ� þ hoðx; y; LÞ

ð36Þ
where U is the unity step function.

ohw

ox
ð0; y; zÞ ¼ oho

ox
ð0; y; zÞ ¼ 0

ohw

ox
ða; y; zÞ ¼ oho

ox
ða; y; zÞ ¼ 0

ohw

oy
ðx; 0; zÞ ¼ oho

oy
ðx; 0; zÞ ¼ 0

ohw

oy
ðx; b; zÞ ¼ oho

oy
ðx; b; zÞ ¼ 0

ð37Þ

There is no particular need to start with defining relative
hydraulic conductivities; it is just convenient. Also, the step
function aspect of the top boundary condition allows for
the testing of adaptive meshing or concentration of grid
points near action zones.
problem.
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7. 1-D flow

Consider 1-D vertical flow along the line x ¼ a
2
; y ¼ b

2
.

Using Eq. (24) at z = 0, co becomes

co ¼ Lþ �1

a
ð38Þ

From Eq. (34)

w ¼ ð1� SÞ2 ð39Þ

which provides

wð0Þ ¼ ð1� �1Þ2

wðLÞ ¼ �2
2

ð40Þ

The solution of Laplace’s equation for w that matches the
above boundary conditions is

w ¼ ð1� �1Þ2
L� z

L

� �
þ �2

2

z
L

� �
ð41Þ
7.1. Pressure head

The solution for pressure head can now be summarized
as follows:

w ¼ ð1� �1Þ2
L� z

L

� �
þ �2

2

z
L

� �
S ¼ 1�

ffiffiffiffi
w

p
ho ¼

1

a
ð�1 � SÞ þ L� z

hw ¼
1

a
ln S þ ho

ð42Þ
7.2. Water and oil content

Water and oil contents are computed by

hw ¼ hr þ ðhs � hrÞS
ho ¼ hs � hw

ð43Þ
7.3. Darcy velocity

Darcy velocity is computed by

vo ¼ �Ko

dho

dz
þ 1

� �
ð44Þ

¼ Ko

a
dS
dz

� �

¼ Kos

a
ð1� SÞ dS

dz

� �

¼ Kos

a

ffiffiffiffi
w

p� �
� 1

2
ffiffiffiffi
w

p
 !

dw
dz

� �

¼ Kos

2aL
½ð1� �1Þ2 � �2

2�
vw ¼ �Kw

dhw

dz
þ 1

� �
ð45Þ

¼ �Kws

a
S

1

S
� 1

� �
dS
dz

¼ �Kws

a

ffiffiffiffi
w

p� �
� 1

2
ffiffiffiffi
w

p
 !

dw
dz

� �

¼ �Kws

2aL
½ð1� �1Þ2 � �2

2�

Therefore, in this simple 1-D case, the Darcy velocities are
constant. However, Kws = Kos is required for total flux or
mobility to be zero.
8. 2-D flow

2-D flow in the plane y ¼ b
2

will now be derived. As seen
in the 1-D case, computing w is the primary challenge. First,
at x = 0, Eq. (14) gives

oS
ox
ð0; zÞ ¼ aeahc

ohw

ox
ð0; zÞ � oho

ox
ð0; zÞ

� �
¼ 0 ð46Þ

From Eq. (34),

oS
ox
ð0; zÞ ¼ � 1

2
ffiffiffiffi
w

p ow
ox
ð0; zÞ ð47Þ

Combining the two equations above gives

ow
ox
ð0; zÞ ¼ 0 ð48Þ

The boundary conditions for w are therefore

wðx; 0Þ ¼ ð1� �1Þ2

ow
ox
ð0; zÞ ¼ ow

ox
ða; zÞ ¼ 0

wðx; LÞ ¼ ð1� �1Þ2 � ½ð1� �1Þ2 � �2
2�

� U x� a
4

� �
� U x� 3a

4

� �� �
ð49Þ

The solution of Laplace’s equation for w can be determined
by separation of variables for this type boundary condition
as shown by Tracy (2006) and is as follows:

w ¼ ð1� �1Þ2 þ A0zþ
X1
i¼1

Ai cosðkixÞ sinhðkizÞ ð50Þ

where

ki ¼
ip
a

ð51Þ

Ai can be determined using a half-range Fourier cosine ser-
ies and evaluating Eq. (50) at z = L. So

A0 ¼ �
ð1� �1Þ2 � �2

2

2L
ð52Þ

and



Table 1
2-D solution

Variable Equation

kwr(x, 0) �1

ho(x, 0) L

hw(x, 0) 1
a ln½kwrðx; 0Þ� þ hoðx; 0Þ

kwr(x,L) �1 þ ð1� �1 � �2Þ U x� a
4

	 

� U x� 3a

4

	 
� �
ho(x,L) �1�kwrðx;LÞ

a
hw(x,L) 1

a ln½kwrðx;LÞ� þ hoðx;LÞ
k4i�2

ð4i�2Þp
a

w ð1� �1Þ2 þ ½ð1� �1Þ2 � �2
2�
h
� z

2L:þ 4
p

P1
i¼1

ð�1Þiþ1

4i�2 cosðk4i�2xÞ sinhðk4i�2zÞ
sinhðk4i�2LÞ

i
S 1�

ffiffiffiffi
w

p
ho

1
a ð�1 � SÞ þ L� z

hw
1
a ln S þ ho

hw hr + (hs � hr)S
ho hs � hw

vox
2Kos ½ð1��1Þ2��2

2
�

aa

P1
i¼1

ð�1Þiþ1 sinðk4i�2xÞ sinhðk4i�2zÞ
sinhðk4i�2LÞ

vwx
2Kws ½ð1��1Þ2��2

2
�

aa

P1
i¼1

ð�1Þi sinðk4i�2xÞ sinhðk4i�2zÞ
sinhðk4i�2LÞ

voz
Kos ½ð1��1Þ2��2

2 �
a

h
1

4L:þ 2
a

P1
i¼1

ð�1Þi cosðk4i�2xÞ coshðk4i�2zÞ
sinhðk4i�2LÞ

�
vow

Kos ½ð1��1Þ2��2
2 �

a

h
� 1

4L:þ 2
a

P1
i¼1

ð�1Þiþ1 cosðk4i�2xÞ coshðk4i�2zÞ
sinhðk4i�2LÞ

�
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Ai ¼ �
2½ð1� �1Þ2 � �2

2�
a sinhðkiLÞ

Z 3a
4

a
4

cosðkixÞdx

¼ � 2½ð1� �1Þ2 � �2
2�

ip sinhðkiLÞ
sin

3ip
4

� �
� sin

ip
4

� �� �
ð53Þ

Only the second and sixth term out of every eight terms of
Ai are nonzero, so the final result for w is now written

w ¼ ð1� �1Þ2 þ ½ð1� �1Þ2 � �2
2�

� � z
2L
þ 4

p

X1
i¼1

ð�1Þiþ1

4i� 2
cosðk4i�2xÞ sinhðk4i�2zÞ

sinhðk4i�2LÞ

" #

ð54Þ

As seen in the 1-D case, once w has been computed, the rest
of the solution falls quickly in place. Table 1 gives a sum-
mary of the results.

9. Convergence of solution

Eq. (54) converges very rapidly and absolutely for
0 6 z < L. Consider the term of the series,

Ai ¼
ð�1Þiþ1

4i� 2
cosðk4i�2xÞ sinhðk4i�2zÞ

sinhðk4i�2LÞ ð55Þ

Then,

jAij 6 Bi ¼
1

4i� 2

� �
sinhðk4i�2zÞ
sinhðk4i�2LÞ ð56Þ

Now,

lim
i!1

Bi ¼ lim
i!1

1

4i� 2

� �
ek4i�2ðz�LÞ � e�k4i�2ðzþLÞ

1� e�2k4i�2L

� �
¼ 0 ð57Þ

Also,
lim
i!1

Biþ1

Bi
¼ lim

i!1

4i� 2

4iþ 2

� � ek4iþ2ðz�LÞ�e�k4iþ2ðzþLÞ

ek4i�2ðz�LÞ�e�k4i�2ðzþLÞ

� �
1�e�2k4iþ2L

1�e�2k4i�2L

� �
2
4

3
5

¼ ek4ðz�LÞ < 1 ð58Þ

This proves that
P1

i¼1Bi converges absolutely. Since
P1

i¼1Bi

converges absolutely, so does the solution in Eq. (54).
Finally, the equations for velocity in Tables 1, 2 and the
3-D solution given below can all be handled as done above.

10. 3-D flow

The boundary conditions for w for the 3-D case are

wðx; y; 0Þ ¼ ð1� �1Þ2
ow
ox
ð0; y; zÞ ¼ ow

ox
ða; y; zÞ ¼ ow

oy
ðx; 0; zÞ ¼ ow

oy
ðx; b; zÞ ¼ 0

wðx; LÞ ¼ ð1� �1Þ2 � ½ð1� �1Þ2 � �2
2�

� U x� a
4

� �h
� U x� 3a

4

� ��

� U y � b
4

� �
� U y � 3b

4

� �� �
ð59Þ

The solution of Laplace’s equation for w from separation of
variables that matches the above boundary conditions is

w ¼ ð1� �1Þ2 þ A0zþ
X1
i¼1

Ai cosðkixÞ sinhðkizÞ

þ
X1
j¼1

Bj cosðkjyÞ sinhðkjzÞ þ
X1
i¼1

X1
j¼1

Cij cosðkixÞ

� cosðkjyÞ sinhðb0zÞ ð60Þ

where



Table 2
3-D solution

Variable Equation

kwr(x,y, 0) �1
ho(x,y, 0) L

hw(x,y, 0) 1
a ln½kwrðx; y; 0Þ� þ hoðx; y; 0Þ

kwr(x,y,L) �1 þ ð1� �1 � �2Þ U x� a
4

	 

� U x� 3a

4

	 
� �
U y � b

4

	 
�
�U y � 3b

4

	 
�
ho(x,y,L) �1�kwrðx;y;LÞ

a
hw(x,y,L) 1

a ln½kwrðx; y; LÞ� þ hoðx; y;LÞ

k4i�2
ð4i�2Þp

a
k4j�2

ð4j�2Þp
b

bij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

4i�2 þ k2
4j�2

q
w ð1� �1Þ2 þ ½ð1� �1Þ2 � �2

2� � z
4Lþ 2

p

P1
i¼1

ð�1Þiþ1

4i�2 cosðk4i�2xÞ sinhðk4i�2zÞ
sinhðk4i�2LÞ

�
þ 2

p

P1
j¼1

ð�1Þjþ1
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kj ¼
jp
b
; b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i þ k2
j

q
ð61Þ

The coefficients of the above equation are evaluated as be-
fore using a double half-range Fourier cosine series. Thus,

A0 ¼ �
ð1� �1Þ2 � �2

2

4L
ð62Þ

and
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As before, only the second and sixth term out of every eight
terms in both the i and j series are nonzero, so the final re-
sult for w becomes

w¼ ð1� �1Þ2þ½ð1� �1Þ2� �2
2�

�
"
� z

4L
:þ 2

p

X1
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ð�1Þiþ1

4i� 2
cosðk4i�2xÞ sinhðk4i�2zÞ
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p
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þ16

p2
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j¼1

ð�1Þiþjþ1
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sinhðbijLÞ

#

ð66Þ

where

bij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

4i�2 þ k2
4j�2

q
ð67Þ

The solution can now be completely defined, and Table 2
contains a summary of the resulting equations.

11. Numerical results and conclusion

Equations for 1-D, 2-D, and 3-D steady-state two-phase
flow have been successfully derived for an example prob-
lem. These solutions can now be used to test numerical
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Fig. 3. Relative hydraulic conductivity for water at different values of a
(m�1).

444 F.T. Tracy / International Journal of Multiphase Flow 34 (2008) 437–446
models in various ways. Also, because the result only needs
a solution to Laplace’s equation for w, many other prob-
lems can be derived from this foundation.

To illustrate this potential, a simple five-point finite vol-
ume program was written for the 2-D solution given in
Table 1. A Picard nonlinear solver and a conjugate gradient
linear solver with diagonal preconditioning were used in
this study, as these options make a good baseline reference
for testing more sophisticated options such as a Newton
nonlinear solver and a linear Krylov subspace solver for
Table 3
Accuracy and convergence results for pressure head of water and oil at x = 5

Nx Ny hw-comp hw-anal Dh

z = 0.5 m
21 21 �147.081 �147.487 0.40
41 41 �147.285 – 0.20
81 81 �147.386 – 0.10

161 161 �147.436 – 0.05
z = 5.0 m
21 21 �118.748 �121.384 2.63
41 41 �120.066 – 1.31
81 81 �120.726 – 0.65

161 161 �121.056 – 0.32
z = 9.5 m
21 21 �84.402 �85.006 0.60
41 41 �84.698 – 0.30
81 81 �84.853 – 0.15

161 161 �84.930 – 0.07

Table 4
Accuracy and convergence results for pressure head of water and oil at x = 5

Nx Ny hw-comp hw-anal Dh

z = 0.5 m
21 21 �6.158 �6.199 0.04
41 41 �6.178 – 0.02
81 81 �6.189 – 0.01

161 161 �6.194 – 0.00
z = 5.0 m
21 21 �7.375 �7.638 0.26
41 41 �7.506 – 0.13
81 81 �7.572 – 0.06

161 161 �7.605 – 0.03
z = 9.5 m
21 21 �7.990 �8.051 0.06
41 41 �8.020 – 0.03
81 81 �8.035 – 0.01

161 161 �8.043 – 0.00
nonsymmetric matrices using a multigrid preconditioner.
The nonlinear solver convergence criterion was when the
worst grid point changed less than 10�3, and the linear sol-
ver convergence criterion was when the worst grid point
changed less than 10�6. As shown in Fig. 3, values of
a = 0.01 m�1, 0.1 m�1, and 1.0 m�1 are considered for rel-
ative hydraulic conductivity. Also, a = 10 m, and L = 10 m.
The larger values of a represent materials that are highly
nonlinear and where the relative hydraulic conductivity of
water drops quickly to near zero.

From using equally spaced grids, Tables 3–5 give accu-
racy and convergence results for water and oil pressure
head at x = 5 m and z = 0.5 m, 5 m, and 9.5 m. As a is
increased, the errors and the number of nonlinear iterations
actually decrease. This is because a is in the denominator of
the nonlinear terms in Eqs. (23) and (24), so the bigger a is,
the less impact the nonlinear terms have on the solution. To
illustrate more dramatically the effect of varying a, Tables
6–8 give results for the 161 � 161 grid at x = 2.5 m and
x = 5 m for a = 0.01 m�1, 0.1 m�1, and 1.0 m�1 near the
top of the grid (rows 145–160). These results show how sig-
nificantly the errors grow with smaller a near the disconti-
m for a = 0.01 m�1

ho-comp ho-anal Dh Iterations

6 8.367 8.479 �0.112 48
2 8.424 – �0.056 49
1 8.452 – �0.028 49
0 8.466 – �0.014 49

6 �8.108 �6.7936 �1.315 48
8 �7.439 – �0.646 49
8 �7.112 – �0.319 49
9 �6.952 – �0.158 49

4 �51.525 �49.879 �1.646 48
8 �50.684 – �0.805 49
4 �50.269 – �0.390 49
6 �50.069 – �0.190 49

m for a = 0.1 m�1

ho-comp ho-anal Dh Iterations

1 9.387 9.398 �0.011 42
0 9.392 – �0.006 42
0 9.395 – �0.003 43
5 9.397 – �0.001 43

4 3.689 3.821 �0.131 42
2 3.756 – �0.065 42
6 3.789 – �0.032 43
3 3.805 – �0.016 43

0 �4.703 �4.538 �0.165 42
1 �4.618 – �0.081 42
5 �4.577 – �0.039 43
8 �4.557 – �0.019 43



Table 5
Accuracy and Convergence Results for Pressure Head of Water and Oil at x = 5 m for a = 1.0 m�1

Nx Ny hw-comp hw-anal Dh ho-comp ho-anal Dh Iterations

z = 0.5 m
21 21 7.9343 7.9301 0.0042 9.4887 9.4898 �0.0011 34
41 41 7.9322 – 0.0021 9.4892 – �0.0006 35
81 81 7.9312 – 0.0010 9.4895 – �0.0003 35

161 161 7.9307 – 0.0007 9.4897 – �0.0001 35
z = 5.0 m
21 21 3.7629 3.7362 0.0268 4.8689 4.8821 �0.0131 34
41 41 3.7497 – 0.0135 4.8756 – �0.0064 35
81 81 3.7431 – 0.0070 4.8789 – �0.0032 35

161 161 3.7400 – 0.0038 4.8805 – �0.0015 35
z = 9.5 m
21 21 �0.3490 �0.3551 0.0061 �0.0203 �0.0038 �0.0165 34
41 41 �0.3520 – 0.0031 �0.0119 – �0.0081 35
81 81 �0.3535 – 0.0016 �0.0077 – �0.0039 35

161 161 �0.3543 – 0.0008 �0.0057 – �0.0019 35

Table 6
Difference in finite volume and analytical solution for pressure head of
water and oil at x = 2.5 m and x = 5 m for a = 0.01 m�1 for the 161 � 161
grid

Row Dhw (2.5) Dhw (5) Dho (2.5) Dho (5)

145 0.8744 0.1598 �0.6128 �0.2500
146 0.9218 0.1496 �0.6508 �0.2451
147 0.9764 0.1393 �0.6946 �0.2396
148 1.0398 0.1289 �0.7455 �0.2335
149 1.1143 0.1184 �0.8053 �0.2266
150 1.2030 0.1079 �0.8765 �0.2189
151 1.3101 0.0973 �0.9626 �0.2103
152 1.4418 0.0868 �1.0687 �0.2008
153 1.6074 0.0763 �1.2026 �0.1903
154 1.8219 0.0660 �1.3768 �0.1785
155 2.1105 0.0558 �1.6128 �0.1654
156 2.5205 0.0458 �1.9513 �0.1506
157 3.1515 0.0360 �2.4801 �0.1336
158 4.2493 0.0266 �3.4250 �0.1137
159 6.5273 0.0174 �5.5025 �0.0892
160 12.2659 0.0086 -11.6640 �0.0563

Table 7
Difference in finite volume and analytical solution for pressure head of
water and oil at x = 2.5 m and x = 5 m for a = 0.1 m�1 for the 161 � 161
grid

Row Dhw (2.5) Dhw (5) Dho (2.5) Dho (5)

145 0.0880 0.0160 �0.0611 �0.0250
146 0.0928 0.0150 �0.0649 �0.0245
147 0.0982 0.0140 �0.0693 �0.0240
148 0.1046 0.0129 �0.0744 �0.0234
149 0.1120 0.0119 �0.0804 �0.0227
150 0.1209 0.0108 �0.0875 �0.0219
151 0.1316 0.0098 �0.0961 �0.0210
152 0.1448 0.0087 �0.1067 �0.0201
153 0.1613 0.0077 �0.1201 �0.0190
154 0.1828 0.0066 �0.1375 �0.0179
155 0.2116 0.0056 �0.1611 �0.0166
156 0.2526 0.0046 �0.1949 �0.0151
157 0.3157 0.0036 �0.2478 �0.0134
158 0.4254 0.0027 �0.3423 �0.0114
159 0.6531 0.0017 �0.5501 �0.0089
160 1.2268 0.0009 �1.1662 �0.0057

Table 8
Difference in finite volume and analytical solution for pressure head of
water and oil at x = 2.5 m and x = 5 m for a = 1.0 m�1 for the 161 � 161
grid

Row Dhw (2.5) Dhw (5) Dho (2.5) Dho (5)

145 0.0096 0.0017 �0.0060 �0.0025
146 0.0101 0.0016 �0.0064 �0.0025
147 0.0106 0.0015 �0.0068 �0.0024
148 0.0112 0.0013 �0.0073 �0.0023
149 0.0120 0.0012 �0.0079 �0.0023
150 0.0129 0.0011 �0.0086 �0.0022
151 0.0139 0.0010 �0.0095 �0.0021
152 0.0153 0.0009 �0.0105 �0.0020
153 0.0169 0.0008 �0.0118 �0.0019
154 0.0190 0.0007 �0.0136 �0.0018
155 0.0219 0.0006 �0.0159 �0.0017
156 0.0260 0.0005 �0.0193 �0.0015
157 0.0323 0.0004 �0.0246 �0.0014
158 0.0432 0.0003 �0.0340 �0.0012
159 0.0659 0.0002 �0.0548 �0.0009
160 0.1230 0.0001 �0.1165 �0.0006
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Fig. 4. Surface plot of difference in finite volume solution and analytical
solution for pressure head of water for the upper, left-hand corner of the
grid for a = 0.1 m�1 using the 161 � 161 grid.
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nuities as compared to the middle of the grid. Fig. 4 gives a
surface plot of error in the pressure head of water (finite
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volume solution – analytical solution) for the upper, left-
hand part of the grid to further illustrate the concentration
of error near the x = 2.5 m, z = 10 m discontinuity. These
results also show that for a given value of a, the number
of nonlinear iterations remains almost constant while
increasing the grid size.

Other tests such as grid adaptivity near the top of the soil
sample can also be done. The above results show that the
presented solutions can certainly aid the verification process
of a two-phase flow groundwater program.
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